34 research outputs found

    Joint Optimization of Uplink Power and Computational Resources in Mobile Edge Computing-Enabled Cell-Free Massive MIMO

    Get PDF
    The coupling of cell-free massive MIMO (CF-mMIMO) with Mobile Edge Computing (MEC) is investigated in this paper. A MEC-enabled CF-mMIMO architecture implementing a distributed user-centric approach both from the radio and the computational resource allocation perspective is proposed. An optimization problem for the joint allocation of uplink powers and remote computational resources is formulated, aimed at striking an optimal balance between the total uplink power consumption and the sum SE throughout the network, under power budget and latency constraints. In order to efficiently solve such a challenging non-convex problem, an iterative algorithm based on sequential convex programming is proposed, along with two approaches to priory assess the problem feasibility. Finally, a detailed performance comparison between the proposed MEC-enabled user-centric CF-mMIMO architecture and its network-centric (both centralized and distributed) counterpart, is provided. Numerical results reveal the effectiveness of the proposed joint optimization problem, under different AP selection strategies, and the natural suitability of CF-mMIMO in supporting computation-offloading applications with benefits over users' transmit power and energy consumption, the offloading latency experienced, and the total amount of allocated remote computational resources.Comment: This paper has been submitted for publication in an IEEE journal. {\copyright} 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other use

    Downlink Spectral Efficiency of Cell-Free Massive MIMO with Full-Pilot Zero-Forcing

    Full text link
    Cell-free Massive multiple-input multiple-output (MIMO) ensures ubiquitous communication at high spectral efficiency (SE) thanks to increased macro-diversity as compared cellular communications. However, system scalability and performance are limited by fronthauling traffic and interference. Unlike conventional precoding schemes that only suppress intra-cell interference, full-pilot zero-forcing (fpZF), introduced in [1], actively suppresses also inter-cell interference, without sharing channel state information (CSI) among the access points (APs). In this study, we derive a new closed-form expression for the downlink (DL) SE of a cell-free Massive MIMO system with multi-antenna APs and fpZF precoding, under imperfect CSI and pilot contamination. The analysis also includes max-min fairness DL power optimization. Numerical results show that fpZF significantly outperforms maximum ratio transmission scheme, without increasing the fronthauling overhead, as long as the system is sufficiently distributed.Comment: Paper published in 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). {\copyright} 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other use

    Downlink Training in Cell-Free Massive MIMO: A Blessing in Disguise

    Full text link
    Cell-free Massive MIMO (multiple-input multiple-output) refers to a distributed Massive MIMO system where all the access points (APs) cooperate to coherently serve all the user equipments (UEs), suppress inter-cell interference and mitigate the multiuser interference. Recent works demonstrated that, unlike co-located Massive MIMO, the \textit{channel hardening} is, in general, less pronounced in cell-free Massive MIMO, thus there is much to benefit from estimating the downlink channel. In this study, we investigate the gain introduced by the downlink beamforming training, extending the previously proposed analysis to non-orthogonal uplink and downlink pilots. Assuming single-antenna APs, conjugate beamforming and independent Rayleigh fading channel, we derive a closed-form expression for the per-user achievable downlink rate that addresses channel estimation errors and pilot contamination both at the AP and UE side. The performance evaluation includes max-min fairness power control, greedy pilot assignment methods, and a comparison between achievable rates obtained from different capacity-bounding techniques. Numerical results show that downlink beamforming training, although increases pilot overhead and introduces additional pilot contamination, improves significantly the achievable downlink rate. Even for large number of APs, it is not fully efficient for the UE relying on the statistical channel state information for data decoding.Comment: Published in IEEE Transactions on Wireless Communications on August 14, 2019. {\copyright} 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other use

    How Much Do Downlink Pilots Improve Cell-Free Massive MIMO?

    Get PDF
    In this paper, we analyze the benefits of including downlink pilots in a cell-free massive MIMO system. We derive an approximate per-user achievable downlink rate for conjugate beamforming processing, which takes into account both uplink and downlink channel estimation errors, and power control. A performance comparison is carried out, in terms of per-user net throughput, considering cell-free massive MIMO operation with and without downlink training, for different network densities. We take also into account the performance improvement provided by max-min fairness power control in the downlink. Numerical results show that, exploiting downlink pilots, the performance can be considerably improved in low density networks over the conventional scheme where the users rely on statistical channel knowledge only. In high density networks, performance improvements are moderate.Comment: 7 pages, 5 figures. IEEE Global Communications Conference 2016 (GLOBECOM). Accepte

    Ubiquitous Cell-Free Massive MIMO Communications

    Get PDF
    Since the first cellular networks were trialled in the 1970s, we have witnessed an incredible wireless revolution. From 1G to 4G, the massive traffic growth has been managed by a combination of wider bandwidths, refined radio interfaces, and network densification, namely increasing the number of antennas per site. Due its cost-efficiency, the latter has contributed the most. Massive MIMO (multiple-input multiple-output) is a key 5G technology that uses massive antenna arrays to provide a very high beamforming gain and spatially multiplexing of users, and hence, increases the spectral and energy efficiency. It constitutes a centralized solution to densify a network, and its performance is limited by the inter-cell interference inherent in its cell-centric design. Conversely, ubiquitous cell-free Massive MIMO refers to a distributed Massive MIMO system implementing coherent user-centric transmission to overcome the inter-cell interference limitation in cellular networks and provide additional macro-diversity. These features, combined with the system scalability inherent in the Massive MIMO design, distinguishes ubiquitous cell-free Massive MIMO from prior coordinated distributed wireless systems. In this article, we investigate the enormous potential of this promising technology while addressing practical deployment issues to deal with the increased back/front-hauling overhead deriving from the signal co-processing.Comment: Published in EURASIP Journal on Wireless Communications and Networking on August 5, 201

    Self-Learning Detector for the Cell-Free Massive MIMO Uplink: The Line-of-Sight Case

    Full text link
    The precoding in cell-free massive multiple-input multiple-output (MIMO) technology relies on accurate knowledge of channel responses between users (UEs) and access points (APs). Obtaining high-quality channel estimates in turn requires the path losses between pairs of UEs and APs to be known. These path losses may change rapidly especially in line-of-sight environments with moving blocking objects. A difficulty in the estimation of path losses is pilot contamination, that is, simultaneously transmitted pilots from different UEs that may add up destructively or constructively by chance, seriously affecting the estimation quality (and hence the eventual performance). A method for estimation of path losses, along with an accompanying pilot transmission scheme, is proposed that works for both Rayleigh fading and line-of-sight channels and that significantly improves performance over baseline state-of-the-art. The salient feature of the pilot transmission scheme is that pilots are structurally phase-rotated over different coherence blocks (according to a pre-determined function known to all parties), in order to create an effective statistical distribution of the received pilot signal that can be efficiently exploited by the proposed estimation algorithm.Comment: Paper accepted for presentation in IEEE SPAWC 2020 - 21st IEEE International Workshop on Signal Processing Advances in Wireless Communications. {\copyright} 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other use

    Local Partial Zero-Forcing Precoding for Cell-Free Massive MIMO

    Full text link
    Cell-free Massive MIMO (multiple-input multiple-output) is a promising distributed network architecture for 5G-and-beyond systems. It guarantees ubiquitous coverage at high spectral efficiency (SE) by leveraging signal co-processing at multiple access points (APs), aggressive spatial user multiplexing and extraordinary macro-diversity gain. In this study, we propose two distributed precoding schemes, referred to as \textit{local partial zero-forcing} (PZF) and \textit{local protective partial zero-forcing} (PPZF), that further improve the spectral efficiency by providing an adaptable trade-off between interference cancelation and boosting of the desired signal, with no additional front-hauling overhead, and implementable by APs with very few antennas. We derive closed-form expressions for the achievable SE under the assumption of independent Rayleigh fading channel, channel estimation error and pilot contamination. PZF and PPZF can substantially outperform maximum ratio transmission and zero-forcing, and their performance is comparable to that achieved by regularized zero-forcing (RZF), which is a benchmark in the downlink. Importantly, these closed-form expressions can be employed to devise optimal (long-term) power control strategies that are also suitable for RZF, whose closed-form expression for the SE is not available.Comment: This paper was accepted for publication in IEEE Transactions on Wireless Communications on March 31, 2020. {\copyright} 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other use

    On the Performance of Cell-Free Massive MIMO with Short-Term Power Constraints

    Get PDF
    In this paper we consider a time-division duplex cell-free massive multiple-input multiple-output (MIMO) system where many distributed access points (APs) simultaneously serve many users. A normalized conjugate beamforming scheme, which satisfies short-term average power constraints at the APs, is proposed and analyzed taking into account the effect of imperfect channel information. We derive an approximate closed-form expression for the per-user achievable downlink rate of this scheme. We also provide, analytically and numerically, a performance comparison between the normalized conjugate beamforming and the conventional conjugate beamforming scheme in [1] (which satisfies long-term average power constraints). Normalized conjugate beamforming scheme reduces the beamforming uncertainty gain, which comes from the users' lack of the channel state information knowledge, and hence, it improves the achievable downlink rate compared to the conventional conjugate beamforming scheme.Comment: 6 pages, 4 figures, 21st IEEE International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD). Special Session - 5Gwireless: Innovative Architectures, Wireless Technologies and Tools for High Capacity and Sustainable 5G Ultra-Dense Cellular Network

    Levels of Heavy Metals in Adolescents Living in the Industrialised Area of Milazzo-Valle del Mela (Northern Sicily)

    Get PDF
    In the Milazzo-Valle del Mela area, the presence of industrial plants and the oil refinery make local residents concerned for their health. For this reason, we evaluated the levels of heavy metals in 226 children aged 12–14 years, living in the 7 municipalities of the area. A control age-matched population (n=29) living 45 km far from the industrial site was also enrolled. Arsenic, cadmium, chromium, mercury, nickel, and vanadium were analysed in 24 h urine samples, while lead concentration was evaluated in blood samples. A questionnaire regarding life style and risk perception was also administered. Adolescents from Milazzo-Valle del Mela had cadmium levels significantly higher compared to either controls  (P<0.0001) or the reference values of the European Germany Environmental Survey (GerES-IV) and the American National Health and Nutrition Examination Survey (NHANES). Furthermore, children had higher perception of living in a high-risk environment. The present data, for the first time, clearly indicate that adolescents living in Milazzo-Valle del Mela have increased body concentration of cadmium, which may be harmful to human health. These results deserve particular attention by the local and regional government to initiate prevention programmes in this susceptible population
    corecore